STUDY SET 03

ENGINEERING GEOMETRY

PROBLEMS FOR LABORATORY WORK

3.1 Coordinate Exercise 1

Draw the shape using the coordinate values.

3.2 Coordinate Exercise 2

Draw the shape with the given dimensions.

3.3 Coordinate Exercise 3

Draw the shape using line commands.

3.4 Coordinate Exercise 4

Draw the shape using the dimensions.

3.5 Coordinate Exercise 5

Draw the shape using the dimensions.

3.6 Coordinate Exercise 6

Draw the shape using the dimensions. All angles are 45° or its multiples. Use snap mode.

3.7 Polyline Example 1

Draw the shape using polyline command and coordinate values.

3.8 Polyline Example 2

Draw the shape using polyline command and snap mode.

3.9 Polyline Exercise 1

Draw the shape using polyline command and snap mode.

3.10 Polyline Exercise 2

Draw the shape using polyline command and snap mode.

3.11 Trim Exercise 1

Draw the top shape (locate the end points of parallel lines crossing the circles approximately. Using trim commands first obtain the second, then third shape.

3.12 Trim Exercise 2

Construct the approximate drawing of the left shape. Using trim command, obtain the right shape.

3.13 Extend Exercise

Construct the approximate drawing of the left shape. Using extend command, obtain the right shape.

3.14 Offset Arm (Figure 3.74)

Draw the offset arm, using the given dimensions.

3.15 Rocker-Arm Gasket (Figure 3.75)

Draw the rocker-arm gasket, using the given dimensions.

3.16 Adjustable Support (Figure 3.76)

Draw the adjustable support, using the given dimensions.

3.17 Slip Cover (Figure 3.79)

Draw the slip cover, using the given dimensions.

3.18 Geometric Construction Exercise 1

Draw the 2-D shape with the given dimensions.

3.19 Geometric Construction Exercise 2

Draw the 2-D shape with the given dimensions.

3.20 Geometric Construction Exercise 3

Draw the 2-D shape with the given dimensions.

3.21 Geometric Construction Exercise 4

Draw the 2-D shape with the given dimensions.

3.22 Geometric Construction Exercise 5

Draw the 2-D shape with the given dimensions.

3.23 Geometric Construction Exercise 6

Draw the 2-D shape with the given dimensions.

3.24 Geometric Construction Exercise 7

Draw the 2-D shape with the given dimensions.

3.25 Geneva Stop Mechanism

Mechanism has a driving wheel turning at a constant speed and a driven wheel turning intermittently. The driven wheel rotates one-fourth turn every time the drive enters and leaves slot. Start with drawing triangle $A B C$, then locate Point P and centerline CP.

3.26 Turkish Flag

Draw Turkish Flag with the given dimensions.

WORKBOOK PROBLEMS

3.1 Ridge Gasket

Sketch the ridge gasket using the rectangular grid.

RIDGE GASKET

NMME - $_{-}$		
COURSE -	DATE -	

3．2 Centering Plate

Sketch the centering plate using the rectangular grid．

NANE二		
COURSE $二 ~$	OATE二	

3.3 Coordinates 1

Four grid lines equal one unit. In the upper half of the rectangular grid paper, sketch the figure using the following absolute coordinate values: 0,$0 ; 3,0 ; 3,2 ; 0,2$; and 0,0 . In the lower half of the rectangular grid paper, sketch the figure using the following relative coordinate values: 0,$0 ; 4,0 ; 0,3 ;-4,0$, and $0,-3$.

3.4 Coordinates 2

Four grid lines equal one unit. Using the isometric grid paper and following the right-hand rule, place and label points at the following locations: $1(0,0,0)$; $2(4,0,0) ; 3(4,2,0) ; 4(0,2,0) ; 5(0,0,2) ; 6(4,0,2) ; 7(4,2,2)$; and $8(0,2,2)$. After placing the points on the isometric grid, connect the following points with lines:

1-2, 2-3, 3-4, 4-1.

5-6, 6-7, 7-8, 8-5.

4-8, 3-7, 1-5, 2-6.

3.5 Geometric Construction

Using scissors, cut out the pattern then use glue or tape to create the 3-D from the cube. The dashed lines represent where the paper is to be folded and the solid lines are where the paper is cut.

SELECTED PROBLEMS

3.1 Piston, Connecting Rod, and Crankshaft (Figure 3.77)

Construct the piston and the crankshaft.

3.2 Split Guide (Figure 3.80)

Draw the split guide, using the given dimensions.

3.3 Arched Follower (Figure 3.81)

Draw the arched follower, using the given dimensions.

3.4 Offset Wrench (Figure 3.84)

Draw the offset wrench, using the given dimensions.

CLASSIC PROBLEMS

3.1 Rod Guide (Figure 149.a)

Sketch or draw with CAD the 2-D drawing. All fillets and rounds are 0.125 inches or 2 mm unless otherwise indicated

3.2 Eyelet (Figure 149.b)

Sketch or draw with CAD the 2-D drawing. All fillets and rounds are 0.125 inches or 2 mm unless otherwise indicated.

3.3 Spline Lock (Figure 150.a)

Sketch or draw with CAD the 2-D drawing. All fillets and rounds are 0.125 inches or 2 mm unless otherwise indicated.

3.4 Pulley Shaft (Figure 150.b)

Sketch or draw with CAD the 2-D drawing. All fillets and rounds are 0.125 inches or 2 mm unless otherwise indicated.

