IE 111 Computer Aided Engineering Drawing

Geometrical Construction-Drawing Simple Geometric Objects

Asst.Prof.Dr.Turgut AKYÜREK

Çankaya University, Ankara

Basic Elements

\square Very basic entities in sketching are

- Line $\sqrt{ }$
- Circle
- Ellipse
- Spline
\square Any geometry can be constructed using these elements.
\square To facilitate drawing we may also need
- Polyline (related with line)
- Rectangle (related with line)
- Polygon (related with line)
- Arc (related with circle)
\square AutoCAD Command "Polyline"
Polyline icon on the draw tool bar
- A polyline is a connected sequence of line or arc segments created as a single object.
- There are several ways to activate the polyline command in AutoCAD , Toolbar button
> Selecting from menu bar
, Simply writing the command in the command window.
- When you select a Polyline, all segments react as one unit. This will help you when you edit your drawings.

Basic Elements - Polyline

- When you click the pline command you must specify the start point at first;
- Specify start point:
- Then
- Specify next point or [Arc/Close/Halfwidth/Length/Undo/Width]:
> If you want to draw a line you must specify the next point
> If you want to draw an arc write "A"
> If you want to close the drawing write "C" (after drawing 2 segments)
> The width option enables you to specify the width of the segment. When you write "W" you will be asked to input starting and end width.
> The segment can start at one width and end another.
> The default value will be shown in brackets.
- The starting width will be the value when the last time Pline command was used.

Basic Elements - Polyline

Basic Elements - Polyline

[The "Halfwidth" option works just like the Width option.

- The only difference is that instead of writing the full width of the polyline, you write half of the width.
- Choosing the "Arc" option provides an arc, we will discuss it later.
\square Use the "Length" option to input a distance rather than a set of coordinates for the next point of the polyline.
- The new line will be drawn at the same angle as previous polyline.

Basic Elements - Polyline

Pline width=1

Pline width=0

Basic Elements - Polyline/Editing

Modify 2
Toolbar
\square
-
When you click PEDIT icon, you will be asked to select a polyline (You can also select the PEDIT command from modify pull-down menu). After \longrightarrow selecting polyline the command line displays sub options;

- Enter an option

Close/Join/Width/Editvertex/Fit/Spline/ Decurve/Ltypegen/Undo]:
The different sub option perform following tasks:

- "Close": If the polyline is open, this option will draw a polyline from the first point drawn to the last point.

Basic Elements - Polyline/Editing

- "Join": It is used to join polylines and lines together so that they act together.
- "Width": Used to edit the polyline's width. You can type the desired value.
\square "Edit Vertex": Used to relocation of the polyline end point.

Basic Elements - Polyline/Editing

\square "Fit": It is used to change a polyline from a straight line into a curved line passing through the points.
\square "Spline": A spline is simply a line chart that plots a fitted curve through each data point in a series.

- "Decurve": Removes the curves on polylines that were constructed with the Fit or Spline sub option. Mathematics

Polyline

Bezier

Spline - Control Vertices
Fit Points

Polyline Example 1.dwg

Polyline Example 2.dwg

Polyline Exercise 3_1.dwg

Polyline Exercise 3_2.dwg

Basic Elements - Polyline/Examples

Basic Elements - Rectangle

\square Select the Rectangle Command.

Basic Elements - Rectangle/Examples

Basic Elements - Circle

(A)

(C)

(B)

CONCENTRIC CIRCLES

(D)

CIRCUMSCRIBED CIRCLE

INSCRIBED CIRCLE
(E)

Basic Elements - Circle

Circle icon

\square AutoCAD provides six option for drawing circles

- Center point, radius (i.e. the default option)
- Center, diameter
- 2 point
- 3 point
- Tan, Tan, Radius
- Tan, Tan, Tan
\square The decision on which one is the best for your application will depend on the information you know about the circle.

Basic Elements - Circle

Center, Radius

Center, Diameter

Basic Elements - Circle

2 Point

3 Point

Basic Elements - Circle

Basic Elements - Circle/Examples

Drawing Tangent from a Point to a Circle

Command: 'Line’
While holding 'Shift', right click and then select 'tangent' in the menu (or just right click, first select 'snap overrides' and then 'tangent' in the menu)
\square Click a point on the circle and then the point.

Drawing Tangent from a Circle to a Circle

- Command: 'Line’

While holding 'Shift', right click and then select 'tangent' in the menu (or just right click, first select 'snap overrides' and then 'tangent' in the menu)

- Click a point on the circle 1
- While holding 'Shift', right click and then select 'tangent' in the menu again (or just right click, first select 'snap overrides' and then 'tangent' in the menu)
\square Click a point on the circle 2

Basic Elements - Arc

- To create arcs, you can specify various

Arc icon con
 combinations of

- Center
- End point
- Start point
- Radius
- Angle
- Length
- Direction

The 3 Point option is the default if you access the command through the arc icon. If you do not change the setup, arcs are usually created in a counterclockwise direction.
The Continue option is used to attach a new arc to the last arc or line drawn.

Basic Elements - Arc

Components of an arc

Start, Center, End

Basic Elements - Arc

Start, Center, Angle

Start, End, Direction

Center, Start, Angle

Start, Center, Length

Start, End, Angle

Start, End, Radius

Basic Elements - Arc/Examples

Basic Elements - Drawing Arc with Polyline

The polyline tool can also be used to construct arcs.
It is especially useful when the arc will be connected with the lines.
\square If you wish to draw an arc write A on the command line.
\square When you choose pline following prompts will display in the command line;

- Command: _pline
- Specify start point:
- Current line-width is 1.0000
- Specify next point or Arc/Close/Halfwidth/Length/Undo/Width]: A
- Specify endpoint of arc or
- [Angle/CEnter/CLose/Direction/Halfwidth/Line/Radius/Second pt/Undo/Width]:
The Close, Halfwidth, Undo, and Width are the same options you encountered in the line command.

Basic Elements - Drawing Arc with Polyline

\square Angle Option lets the user specify the included angle that forms the arc. You must specify an included angle and then an endpoint.
Center Option will request the center and the end point of the arc.
\square Radius Option requires the radius and the endpoint of the arc.
\square Second Point Option allow the user to simply pick the point where the arc will end. You must enter a second point of

Starting Point

1 Center

Second
Point on the Arc the arc and then endpoint.

Basic Elements - Drawing Arc with Polyline

\square Draw the shape with Polyline Command (File Name: Arc with Polyline) ;

- Rules;
> Start from 50,240 point.
> Select line width 2 mm both starting and ending points.
> Use relative rectangular coordinate system.
> Choose appropriate option to draw arc with polyline command.

Basic Elements - Conic Curves

Basic Elements - Conic Curves

Telescope

Basic Elements - Conic Curves

Parabola

Searchlight mirror

Beam of uniform strength

Telescope mirror

Basic Elements - Conic Curves

Parabola

A point on parabola is equidistant to directrix and focus.

$$
y=a x^{2}+b x+c
$$

Basic Elements - Conic Curves

Hyperbola

Basic Elements - Conic Curves

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

directrix
$x=a^{2} / c$

Basic Elements - Conic Curves

Ellipse

Basic Elements - Conic Curves

Edge view of
circle

Front view

What you see

Basic Elements - Conic Curves

Ellipse

(© Photri Inc.) Capitol Building in Washington, D.C.

Basic Elements - Ellipse

\square An ellipse is drawn by selecting the ellipse icon from the draw toolbar or from Draw pull-down menu.
\square Three option exist:
Ellipse
icon - Axis Endpoint (i.e. default if you access the command through the arc icon)

- Center
- Arc

Basic Elements - Ellipse

E Ellipse have a major and a minor axis.

- The Axis Endpoint option asks you to specify the endpoints of the one axis of the ellipse.

\square These endpoints may define either major or the minor axis.
- AutoCAD then request the distance from the center point of the first axis to the endpoint of the second axis.
\square These three points will define your ellipse.

Basic Elements - Ellipse

- Another way to construct an ellipse with AutoCAD is to use the Center option.
- You can select this option from the Pull-down menu or you can access this option by typing C at the command line after clicking ellipse icon.
When you have selected the center of the ellipse, you must specify the endpoint of the axes.
\square AutoCAD then asks for the distance to the other axis.

Basic Elements - Ellipse/Examples

Basic Elements - Freeform Curves

(A)

(B)

Basic Elements - Freeform Curves

Spline - Piecewise polynomial real function

Basic Elements - Freeform Curves

Result of changing
 control points

Basic Elements - Freeform Curves

(Courtesy of Chevrolet Division, General Motors Corporation.)

Angles

Two intersecting lines
(A)

Right
(C)

Straight
(B)

Acute
(D)

(F)
(E)

Supplementary angles
(G)

Planes

3 Points

Line and a Point

2 Intersecting Lines

Planes

A quadrilateral with both pairs of opposite sides parallel and all sides the same length, i.e., an equilateral parallelogram.

Square
(A)

Rhombus
(C)

Rectangle
(B)

Rhomboid
(D)

A parallelogram in which adjacent sides are of unequal length.

A quadrilateral with no sides parallel pair of parallel sides

Planes

Regular Polygons

(Equilateral)

Triangle
(equilateral)

Square

Pentagon

Hexagon

Heptagon

Icosagon

Basic Elements - Polygon

- With Polygon command you can draw regular polygons that have 3 to 1024 sides.
. When you click the polygon icon the AutoCAD will ask you the number of sides of the polygon.
- Enter number of sides < > :
- The value within the brackets $<>$ will be the default value based on the last time the command was used.
- After you have determined the number of sides of the polygon you will have following options;
- Center (i.e. default option)
- Edge

Basic Elements - Polygon

After choosing the center or edge
of the polygon you will be asked to enter an option[Inscribed in circle/Circumscribed about circle]<l>:

- This means that you must decide whether you want to crate your polygon within the circle or around the circle. The default value is I.
- After that you will be asked to specify radius of circle.

Basic Elements - Polygon/Examples

Inscribed in circle

Circumscribed by circle

Planes

Equilateral triangle All sides equal; all angles equal.

Isosceles triangle 2 sides equal; 2 angles equal.

Scalene triangle No sides or angles equal.

Right triangle One 90° angle.
(A)
(B)

Theorem of Pythagoras

Obtuse
triangle
(C)
(D)
(F)

(G)

Surfaces

Outer faces of an object

(Courtesy of Lockheed Martin.)

(A)

Planar Surface
(D)

Warped Surface

(B)

Single-Curved Surface

(E)

Freeform Surface

(C)

Double-Curved Surface

Surfaces

(G)

Developable Surface (unfoldable onto a plane)

(H)

Undevelopable Surface

Single Curved Surfaces

Cones

Single Curved Surfaces

Cones

Right cone

Truncated cone

Oblique cone

Frustum cone

Single Curved Surfaces

Cylinders

Multiview drawing of a
right cylinder

Right circular cylinder

Cylindrical surface

Oblique elliptical cylinder

Single Curved Surfaces

Convolutes

Single-curved surfaces generated by moving of a straight line which is always tangent to a double-curved line.

Helical, double-curved line directrix

Tangent line generatrix

Polyhedra

A polyhedron is a 3-D object with multiple polygonal sides.

Tetrahedron

Hexahedron (cube)

Octahedron

Dodecahedron

Icosahedron

Regular Polyhedra

Polyhedra

Prisms

Polyhedra with two equal parallel faces

Polyhedra

Pyramids

Polyhedra with polygonal base and lateral faces having a common intersection point, called vertex.

(1) Warped Surfaces

Two consequtive positions of the line are skewed (not in the same plane)

3-D Modeling

2-D Modeling versus 3-D Modeling

Just a drawing of the object

Like a
Real Object

Primary Aproaches of 3-D Modeling

\square Wireframe Modeling

\square Surface Modeling

Solid Modeling

3-D Modeling

Wireframe Modeling

The vertex and edge list of a wireframe model

Vertex List

V_{1}	$(0,0,0)$
V_{2}	$(1,0,0)$
V_{3}	$(0,1,0)$
V_{4}	$(0,0,1)$

Edge List

$$
\begin{aligned}
& \mathrm{E}_{1}<\mathrm{V}_{1}, \mathrm{~V}_{2}> \\
& \mathrm{E}_{2}<\mathrm{V}_{2}, V_{3}> \\
& \mathrm{E}_{3}<\mathrm{V}_{3}, V_{1}> \\
& \mathrm{E}_{4}<\mathrm{V}_{1}, V_{4}> \\
& \mathrm{E}_{5}<\mathrm{V}_{2}, V_{4}> \\
& \mathrm{E}_{6}<\mathrm{V}_{3}, V_{4}>
\end{aligned}
$$

3-D Modeling

Wireframe Modeling

A wireframe model using circular and linear edges

Vertex List	Edge List	Type
	$\mathrm{E}_{1}<\mathrm{V}_{1}, \mathrm{~V}_{2}>$	Circular
$\mathrm{V}_{1}(-1,0,1)$	$\mathrm{E}_{2}<\mathrm{V}_{2}, \mathrm{~V}_{1}>$	Circular
$\mathrm{V}_{2}(1,0,-1)$	$\mathrm{E}_{3}<\mathrm{V}_{3}, \mathrm{~V}_{4}>$	Circular
$\mathrm{V}_{3}(-1,5,1)$	$\mathrm{E}_{4}<\mathrm{V}_{4}, \mathrm{~V}_{3}>$	Circular
$\mathrm{V}_{4}(1,5,-1)$	$\mathrm{E}_{5}<\mathrm{V}_{1}, \mathrm{~V}_{3}>$	Linear
	$\mathrm{E}_{6}<\mathrm{V}_{2}, \mathrm{~V}_{4}>$	Linear

3-D Modeling

Wireframe Modeling

Example of a wireframe model lacking uniqueness

The same edge and vertex list can describe different objects, depending on how the faces are interpreted.

3-D Modeling

Wireframe Modeling

Which face is in front and which is in back?

3-D Modeling

Surface Modeling

Swept surfaces

Generating swept surfaces by sweeping generator entities along director entities.

3-D Modeling

Surface Modeling

Complex surface
A more complex surface can be created by sweeping directrix along a curved generatrix.

(A)

(B)

3-D Modeling

Surface Modeling

Revolved surface

A directrix can be rotated about an axis between 1 and 360 degrees.

3-D Modeling

Surface Modeling

Lofting to define a surface

Lofting uses two or more directrix curves to define a surface.

3-D Modeling

Solid Modeling

- Extrude
- Constant cross-section
- along a straight line
[Revolve
- Constant cross-section
- around an axis of revolution
\square Sweep \square
- Constant cross-section
- along a space curve
\square Loft \square
- Multiple cross-sections
- along a space curve

English - Turkish Dictionary

spline	Şerit, eğri cetveli	polyline	Çoklu çizgi	polygon	çokgen
rectange	dikdörtgen	arc	yay	width	(Çizgi) kalınlığı
vertex	Tepe noktası	edit	düzenleme	fit	uyma
decurve	Eğriyi kaldırma	side	kenar	center	merkez
circle	Çember, daire	tangent	teğet	chord	kiriş
radius	yarıçap	diameter	çap	secant	Eğriyi kesen çizgi
angle	açı	ellipse	elips	chamfer	Pah kırma
fillet	Kavis, köşe yuvarlatma	default	varsayılan	Minor axis	Küçük eksen
slope	eğim	inscribed	İçine çizili	circumscribed	Dışına çizili
circumference	çevre	area	alan	join	birleştirme
direction	istikamet	Start point	Başlama noktası	End point	Bitiş noktası

