IE 111 Computer Aided Engineering Drawing

Orthographic Projection - Visualizing Solids and Multiview Drawings

Asst.Prof.Dr.Turgut AKYÜREK

Çankaya University, Ankara

Visualizing Solids and Multiview Drawings - Illustrative Examples

Visualizing Solids and Multiview Drawings - Illustrative Examples

Visualizing Solids and Multiview Drawings - Illustrative Examples

Rule for Alignment of Features

Every point or feature in one view must be aligned on a parallel projectior in any adjacent view.

Rule for Distances in Related Views

Distances between any two points of a feature in related views must be equal.

Fundamental Views of Edges for Visualization

Fundamental Views of Edges

Determine the fundamental views of edges on a multiview drawing by the position of the object relative to the current line of sight and the relationship of the object to the planes of the glass box.

Rule for True Length and Size Features are true length or true size when the lines of sight are perpendicular to the feature.

TOP

Rule for Foreshortening Features are foreshortened when the lines of sight are not perpendicular to the feature.

FRONT

RIGHT SIDE

Fundamental Views of Edges for Visualization

Oblique Line

Oblique line $1-2$ is not parallel to any of the principal planes of the projection of the glass box.

Fundamental Views of Principal Planes for Visualization

Normal Faces

Projection of the normal faces onto the image plane.

(C)

Fundamental Views of Principal Planes for Visualization

Normal Face Projection

A normal face projects on all three principal image planes. On the image plane, the face appears true size and shape. In the other two, the face appears on edge and is represented as a line.

Fundamental Views of Principal Planes for Visualization

Edge Views of a Normal Face

In amultiview projection, edge views of a normal face become the outlines of nother face.

Fundamental Views of Principal Planes for Visualization

Camera Metaphor

The metaphor of cameras can be used to describe capturing three principal views of the object front, top, and right side - through the three image planes.

Fundamental Views of Inclined Planes for Visualization

Inclined Face Projection

An inclined face is oriented so that it is not parallel to any of the principal image planes. The inclined face is foreshortened in two views and is an edge in one view.

(A)

(C)
C)
(D)

Fundamental Views of Inclined Planes for Visualization

Oblique Face Projection

The projection of an oblique face is foreshortened in all three principal image planes.

(A)

(B)

Fundamental Views of Surfaces for Visualization

Fundamental Views of Surfaces

Surface A is parallel to the frontal plane of projection. Surface C is parallel to the profile plane of projection. Surface D is an inclined plane and is on edge in one of the principal views (the front view). Surface E is an oblique plane and is neither parallel nor on edge in any of the principal planes of projection.

Multiview Drawings of Solid Primitive Shapes

Understanding and recognizing these shapes will help you to understand their application in technical drawings. Notice that the cone, sphere, and cylinder are represented with fewer than three views.

Multiview Drawings of Solid Primitive Shapes

Multiview Drawings of Solid Primitive Shapes

Rule of Configuration of Planes

Surface B is an example of the Rule of Configuration of Planes. The edges of surface C, 3-4 and 5-6, are examples of the Rule of Parallel Features.

Rule for Configuration of

 PlanesAreas that are the same feature will always be similar in configuration from one view to the next, unless viewed on page.

viewed on page.

Rule for Parallel Features Parallel features will always appear parallel in all viewes.

Fundamental Views of Surfaces for Visualization

Rule for Edge Views

Surfaces that are parallel to the lines of sight will appear on edge and be represented as lines.

FRONT

RIGHT SIDE

Fundamental Views of Surfaces for Visualization

Angles

Angles other than 90 degrees only can be measured in views where the surface that contains the angle is perpendicular to the line of sight. A 90degree angle can be measured in a foreshortened surface if one edge is true length.

Fundamental Views of Curved Surfaces for Visualization

Limiting Elements

Cone

Cylinder

In technical drawings, a cone is represented as a circle in one view and a triangle in the other. The sides of the triangle represent limiting elements of the cone. A cylinder is represented as a circle in one view and a rectangle in the other.

Fundamental Views of Curved Surfaces for Visualization

Tangent Partial Cylinder

A rounded end (or partial cylinder) is represented as an arc when the line of sight is parallel to the axis of the partial cylinder. No line is drawn at the place where the partial cylinder becomes tangent to another feature, such as the vertical face of the slide.

Fundamental Views of Curved Surfaces for Visualization

Nontangent Partial Cylinder

When the transition of a rounded end to another feature is not tangent, a line is used at the point of intersection.

Fundamental Views of Curved Surfaces for Visualization

Elliptical Representation of a Circle

An elliptical view of a circle is created when the circle is viewed at an oblique angle.

Cylinder viewed at 90° to its top surface

Cylinder viewed at 45° to its top surface

Fundamental Views of Curved Surfaces for Visualization

Viewing Angles for Ellipses

The size or exposure of an ellipse is determined by the angle of the line of sight relative to the circle.

(A) What you see: TRUE SIZE

(C) What you see: ELLIPSE

(B) What you see: ELLIPSE

(D) What you see: ELLIPSE

Fundamental Views of Curved Surfaces for Visualization

Representation of Various Types of Machined Holes

(A) Through hole

(Drill diameter) 82° (Countersink diameter an angle drawn at 90°)

Fundamental Views of Curved Surfaces for Visualization

Representation of Various Types of Machined Holes

(D) Drilled and countersunk hole

(E) Drilled and spotfaced hole

(F) Threaded hole

Fundamental Views of Curved Surfaces for Visualization

Representation of Fillets and Rounds

Fillets and rounds indicate that surfaces of metal objects have not been machine finished; therefore, there are rounded corbers.

Fundamental Views of Fillets and Rounds for Visualization

Representing Filleted and Rounded Corners

Lines tangent to a fillet or rounded are constructed and then extended, to create a sharp corner. The location of sharp corner is projected to the adjacent view, to determine where to place representative lines indicating a change of planes.

Fundamental Views of Fillets and Rounds for Visualization

Examples of Representing Filleted and Rounded Corners

Lines are added to parts with fillets and rounds, for clarity. Lines are used in the top views of these parts to represent changes of planes that have fillets or rounds at the corners.

Fundamental Views of Chamfers for Visualization

Examples of Internal and External Chamfers

Chamfers are used to break sharp corners on ends of cylinders and holes.

Internal Chamfer

Fundamental Views of Runouts for Visualization

Runouts

Runouts are used to represent corners with fillets that intersect cylinders. Notice the difference in the point of tangency with and without the fillets.

Fundamental Views of Runouts for Visualization

Examples of Runouts in Multiview Drawings

(A)

(B)

(C)

(D)

Fundamental Views of Runouts for Visualization

Examples of Runouts in Multiview Drawings

Fundamental Views of Runouts for Visualization

Examples of Runouts in Multiview Drawings

Fundamental Views of Runouts for Visualization

Representing the Intersection of Two Cylinders

(B)

(C)

Representation of the intersection of two cylinders varies according to the relative sizes of the cylinders.

Fundamental Views of Runouts for Visualization

Representing the Intersection Between a Cylinder and a Hole

Representation of the intersection between a cylinder and a hole or slot depends on the size of the hole or slot relative to the cylinder.

Revolution Conventions

Revolution Conventions Used to Simplfy the Representation of Ribs and Webs

(A) True projection

(B) Preferred

Revolution Conventions

Revolution Conventions Used on Objects with Bolt Circles to Eliminate Hidden Lines and Improve Visualization

Revolution Conventions

Revolution Conventions Used to Simplfy the Representation of Arms

True projection

Preferred

Visualization for Design

Design Visualization

(© Art Resource.)
Leonardo da Vinci used drawings as a means of visualizing his designs.

Visualization for Design

Hand/Eye Connection

The hand/eye connection is important when sketching.

Visualization for Design

Hand/Eye/Mind Connection

The hand/eye/mind connection more accurately describe the processes used to make sketches. The mind forms a mental picture of existing or nonexisting objects, which can then be sketched. The feedback loop between the mind and the hand is so powerful that the object need not exist.

Solid Object Features

These rectangular prism and cylinder primitives show important features: edge, face, vertex, and limiting element.

Solid Object Features

Object Faces

The hexagonal prism has an end face attached to six other faces.

Solid Object Visualization

Combinations and Negative Solids

(A)

(B)

(C) No!

Combining Solid Objects

Additive combinations of primitives can be used to create new forms. This example shows acceptable (A and B) and unacceptable © ways a cylinder could be added to a cube to form a new object.

Solid Object Visualization

Combinations and Negative Solids

Removing Solid Objects

The cylinder subtracted from the cube is equal volume and shape to the hole left in the cube.

Solid Object Visualization

Combinations and Negative Solids

Subtracting a Square Prism

When a square prism is subtarcted from the cube, the edges of the hole match the end face of the square prism.

Solid Object Visualization

Combinations and Negative Solids

Subtracting Progressively Larger Prisms

Subtraction of progressively larger prisms from the brick creates entirely different geometric forms.

Solid Object Visualization

Combinations and Negative Solids

Subtracting Progressively Larger Wedges

Subtraction of progressively larger wedges from the brick creates new geometric forms.

Solid Object Visualization

Combinations and Negative Solids

Subtraction of progressively larger pyramids from the brick creates new geometric forms.

Solid Object Visualization

Combinations and Negative Solids

(A)

(B)

Additive and Subtractive techniques can be used to make a solid geometric form.

Solid Object Visualization

Planar Surfaces

Normal Cutting Plane

A normal cutting plane in the brick will create a new surface called face. This new surface is exactly the same as the end face.

Solid Object Visualization

Planar Surfaces

Cutting Plane Rotated About Single Axis

A cutting plane is rotated about a single axis in the brick. This creates inclined faces until the plane has rotated 90 degrees, creating a face normal to the top view.

Solid Object Visualization

Planar Surfaces

Cutting Plane Rotated About Two Axes

Rotating a cutting plane about two axes in the brick creates a new face called an oblique faces.

Solid Object Visualization

Planar Surfaces

Cutting Plane Rotation

Rotating a cutting plane in a cylinder creates circular and elliptical faces.

Solid Object Visualization

Planar Surfaces

(A)

(B)

(C)

Progressive Slicing of a Cylinder, Cone, and Sphere primitives.

Solid Object Visualization

Symmetry

(A)

(B)

Planes of Symmetry

Planes of symmetry for a cylinder are created by passing a plane through the midpoint of the cylinder (A) or by passing the plane through the centers of the circular ends (B).

Solid Object Visualization

Surface Models (Developments)

Surface Cutting Planes

(B)

Cutting planes can be used to cover the surface of the brick.

Solid Object Visualization

Surface Models (Developments)

Development

Development of the brick is accomplished by cutting the skin of the brick along some of the edges, then unfolding the skin and flattening it.

Solid Object Visualization

Surface Models (Developments)

Brick edges that are attached to form the brick skin are indicated by dashed lines.

There are many alternative methods of creating the development for the brick, such as the one shown here.

Solid Object Visualization

Surface Models (Developments)

(A)

(B)

Single- and Double-Curved Surface Development

The difference between developing a single-curved surface (a cylinder) and a double -curved surface (a sphere).

Multiview Drawing Visualization

\square Reading a drawing means

- being able to look at a two- or three-view multiview drawing and
- form a clear mental image of the threedimensional object.

Techniques to Visualize Geometry of an Object

- Projection Studies
- Physical Model Construction
- Adjacent Areas
- Similar Shapes
- Surface Labeling
- Missing Lines
- Vertex Labeling
- Analysis by Solids
- Analysis by Surfaces

Techniques to Visualize Geometry of an Object

Projection Studies

Examples of the standard representations of various geometric forms.

Techniques to Visualize Geometry of an Object

Projection Studies

			H
4	$\square \leqslant$	$\square 8$	\square
$\square A$	$\square \square$	$\square \in$	$\square \square$
(©) (0)	∞		$\begin{aligned} & (\mathrm{P})=1 \mathrm{~B}^{\infty} \\ & \square \square \pi^{2} \end{aligned}$

Examples of the standard representations of various geometric forms.

Techniques to Visualize Geometry of an Object

Physical Model Construction

Orthographic

(C)

(A)

(D)

(B)

(E)

Creating a Real Model

Using Styrofoam or modeling clay and a knife, model simple 3-D objects to aid the visualization process.

Techniques to Visualize Geometry of an Object

Physical Model Construction

A Sulpture Technique

Techniques to Visualize Geometry of an Object

Adjacent Areas

Top

Front

Isometric

Right side

Given the top view, make isometric sketches of possible 3-D objects.

Techniques to Visualize Geometry of an Object

Adjacent Areas

Top

Front

Isometric

Right side

Possible Solutions.

Techniques to Visualize Geometry of an Object

Similar Shapes

Similar-Shaped Surfaces

Similar-shaped surfaces will retain their basic configuration in all views, unless viewed on edge. Notice that the number of edges of a face remains constant in all the views and that edges parallel in one view remain parallel in other views.

Techniques to Visualize Geometry of an Object

Similar Shapes

Similar-Shaped Surfaces

Similar-shaped surfaces will retain their basic configuration in all views, unless viewed on edge. Notice that the number of edges of a face remains constant in all the views and that edges parallel in one view remain parallel in other views.

Techniques to Visualize Geometry of an Object

Surface Labeling

To check the accuracy of multiview drawings, surfaces can be labeled and compared to those in the pictorial view.

Techniques to Visualize Geometry of an Object

Missing Lines

Completed multiview

Missing Line Problems

One way to improve your proficiency is to solve missing-line problems. A combination of holistic visualization skills and systematic analysis is used to identify missing features.

Techniques to Visualize Geometry of an Object

Vertex Labeling

Numbering the isometric pictorial and the multiviews to help visualize an object.

Vertex Labeling

Techniques to Visualize Geometry of an Object

Analysis by Solids

A complex object can be visualized by decomposing it into simpler geometric forms.

Analysis by Solids

Positioned
Primitives

BOOLEAN OPERATIONS

$$
P_{1}-P_{2} \quad P_{2} \fallingdotseq P_{1}
$$

P1 (n) P2

Analysis by Solids

(c) EAD-notes.EDII

Analysis by Solids

Analysis by Solids

CSG: CONSTRUCTIVE SOLIDS GEOMETRY

Primitives:
Cube, Halfspace, Sphere, Cylinder, Cone, Torus

Boolean Set-operations:
Union,
Intersection,
Difference

CSG-TREE

Techniques to Visualize Geometry of an Object

Analysis by Solids

Visualizing a multiview drawing using analysis by solids.

Techniques to Visualize Geometry of an Object

Analysis by Solids

Techniques to Visualize Geometry of an Object

Analysis by Surfaces

Techniques to Visualize Geometry of an Object

Analysis by Surfaces

Visualizing drawing using analysis by surfaces.

Conclusions drawn.

Visualization Exercise 5.1

Visualization Exercise 5.2

Visualization Exercise 5.3

Surface Labeling

Visualization Exercise 5.4

Visualization Exercise 5.5

20,21,22,23.
19.24°

Visualization Exercise 5.6

Visualization Exercise 5.7

Visualization Exercise 5.8/5.9

Visualize the object by labeling the vertices and surfaces.
Vertex Labeling Surface Labeling

Visualization Exercise 5.8

Vertex Labeling

Visualization Exercise 5.9

Surface Labeling

Visualization Exercise 5.10

(1) Visualization Exercise 5.12

Visualization Exercise 5.12

Vertex Labeling

(2) Visualization Exercise 5.13

Visualization Exercise 5.13

Surface Labeling

(D) Visualization Exercise 5.15

Analysis by Solids

Visualization Exercise 5.15

Analysis by Solids

Visualization Exercise 5.16

Surface Labeling

Problem 5.21 (Figure 161A)

Surface Labeling

Match the given surface letter from the pictorial drawing with the corresponding surface number from the multiview drawing for each view.

Surface	Top	Front	Side
A			
B			
C			
D			
E			
F			
G			
H			
I			
J			
K			

(A)

Draw top, front and right side views and number the surfaces.

Problem 5.1

Surface Labeling

Motor Plate

Given the pictorials, sketch or draw using CAD the multiviews and 3-D CAD model.

Seat

Given the pictorials, sketch or draw using CAD the multiviews and 3-D CAD model.

Bearing Plate

Given the pictorials, sketch or draw using CAD the multiviews and 3-D CAD model.

English - Turkish Dictionary

visualizing	Görüntüleme, gözde canlandırma	solid	Katı (cisim)	cylinder	silindir
Illustraritve	Açıklayıcı, aydınlatıcı	bulk	Yığın, kütle, hacim	union	birleşim
difference	fark	intersection	kesişim	wedge	kama
transform	dönüşüm	model	Kalıp, örnek	block	kütük
sculpture	Heykel, heykeltraşlık	analysis	İnceleme, analiz	prismatic	Prizma şeklinde
basic	Ana, esas	virtual	sanal	corner	köşe
surface	yüzey	cone	koni	torus	halka
hole	delik	accuracy	doğruluk		

